Corante

About this Author
DBL%20Hendrix%20small.png College chemistry, 1983

Derek Lowe The 2002 Model

Dbl%20new%20portrait%20B%26W.png After 10 years of blogging. . .

Derek Lowe, an Arkansan by birth, got his BA from Hendrix College and his PhD in organic chemistry from Duke before spending time in Germany on a Humboldt Fellowship on his post-doc. He's worked for several major pharmaceutical companies since 1989 on drug discovery projects against schizophrenia, Alzheimer's, diabetes, osteoporosis and other diseases. To contact Derek email him directly: derekb.lowe@gmail.com Twitter: Dereklowe

Chemistry and Drug Data: Drugbank
Emolecules
ChemSpider
Chempedia Lab
Synthetic Pages
Organic Chemistry Portal
PubChem
Not Voodoo
DailyMed
Druglib
Clinicaltrials.gov

Chemistry and Pharma Blogs:
Org Prep Daily
The Haystack
Kilomentor
A New Merck, Reviewed
Liberal Arts Chemistry
Electron Pusher
All Things Metathesis
C&E News Blogs
Chemiotics II
Chemical Space
Noel O'Blog
In Vivo Blog
Terra Sigilatta
BBSRC/Douglas Kell
ChemBark
Realizations in Biostatistics
Chemjobber
Pharmalot
ChemSpider Blog
Pharmagossip
Med-Chemist
Organic Chem - Education & Industry
Pharma Strategy Blog
No Name No Slogan
Practical Fragments
SimBioSys
The Curious Wavefunction
Natural Product Man
Fragment Literature
Chemistry World Blog
Synthetic Nature
Chemistry Blog
Synthesizing Ideas
Business|Bytes|Genes|Molecules
Eye on FDA
Chemical Forums
Depth-First
Symyx Blog
Sceptical Chymist
Lamentations on Chemistry
Computational Organic Chemistry
Mining Drugs
Henry Rzepa


Science Blogs and News:
Bad Science
The Loom
Uncertain Principles
Fierce Biotech
Blogs for Industry
Omics! Omics!
Young Female Scientist
Notional Slurry
Nobel Intent
SciTech Daily
Science Blog
FuturePundit
Aetiology
Gene Expression (I)
Gene Expression (II)
Sciencebase
Pharyngula
Adventures in Ethics and Science
Transterrestrial Musings
Slashdot Science
Cosmic Variance
Biology News Net


Medical Blogs
DB's Medical Rants
Science-Based Medicine
GruntDoc
Respectful Insolence
Diabetes Mine


Economics and Business
Marginal Revolution
The Volokh Conspiracy
Knowledge Problem


Politics / Current Events
Virginia Postrel
Instapundit
Belmont Club
Mickey Kaus


Belles Lettres
Uncouth Reflections
Arts and Letters Daily
In the Pipeline: Don't miss Derek Lowe's excellent commentary on drug discovery and the pharma industry in general at In the Pipeline

In the Pipeline

« That Retracted Stressed Stem Cell Work | Main | AbbVie and Shire, Quietly »

July 7, 2014

Catalyst Voodoo, Yielding to Spectroscopy?

Email This Entry

Posted by Derek

Catalysts are absolutely vital to almost every field of chemistry. And catalysis, way too often, is voodoo or a close approximation thereof. A lot of progress has been made over the years, and in some systems we have a fairly good idea of what the important factors are. But even in the comparatively well-worked-out areas one finds surprises and hard-to-explain patterns of reactivity, and when it comes to optimizing turnover, stability, side reactions, and substrate scope, there's really no substitute for good old empirical experimentation most of the time.

The heterogeneous catalysts are especially sorcerous, because the reactions are usually taken place on a poorly characterized particle surface. Nanoscale effects (and even downright quantum mechanical effects) can be important, but these things are not at all easy to get a handle on. Think of the differences between a lump of, say, iron and small particles of the same. The surface area involved (and the surface/volume ratio) is extremely different, just for starters. And when you get down to very small particles (or bits of a rough surface), you find very different behaviors because these things are no longer a bulk material. Each atom becomes important, and can perhaps behave differently.

Now imagine dealing with a heterogeneous catalyst that's not a single pure substance, but is perhaps an alloy of two or more metals, or is some metal complex that itself is adsorbed onto the surface of another finely divided solid, or needs small amounts of some other additive to perform well, etc. It's no mystery why so much time and effort goes into finding good catalysts, because there's plenty of mystery built into them already.

Here's a new short review article in Angewandte Chemie on some of the current attempts to lift some of the veils. A paper earlier this year in Science illustrated a new way of characterizing surfaces with X-ray diffraction, and at short time scales (seconds) for such a technique. Another recent report in Nature Communications describes a new X-ray tomography system to try to characterize catalyst particles.

None of these are easy techniques, and at the moment they require substantial computing power, very close attention to sample preparation, and (in many cases) the brightest X-ray synchrotron sources you can round up. But they're providing information that no one has ever had before about (in these examples) palladium surfaces and nanoparticle characteristics, with more on the way.

Comments (2) + TrackBacks (0) | Category: Analytical Chemistry | Chemical News


COMMENTS

1. Haftime on July 8, 2014 7:35 AM writes...

I think your title is a little confusing, Derek. None of the papers you mention are spectroscopy - they're all diffraction techniques. Regardless, I also agree that all these steps towards understanding these complex materials are pretty exciting.

Permalink to Comment

2. Anonymous on July 13, 2014 10:07 AM writes...

I think Dick Zare's lab is making major progress with regard to tracking transition metal catalyzed mechanisms using mass-spec. PDF: http://web.stanford.edu/group/Zarelab/publinks/898.pdf

Permalink to Comment

POST A COMMENT




Remember Me?



EMAIL THIS ENTRY TO A FRIEND

Email this entry to:

Your email address:

Message (optional):




RELATED ENTRIES
How Not to Do It: NMR Magnets
Allergan Escapes Valeant
Vytorin Actually Works
Fatalities at DuPont
The New York TImes on Drug Discovery
How Are Things at Princeton?
Phage-Derived Catalysts
Our Most Snorted-At Papers This Month. . .