Corante

About this Author
DBL%20Hendrix%20small.png College chemistry, 1983

Derek Lowe The 2002 Model

Dbl%20new%20portrait%20B%26W.png After 10 years of blogging. . .

Derek Lowe, an Arkansan by birth, got his BA from Hendrix College and his PhD in organic chemistry from Duke before spending time in Germany on a Humboldt Fellowship on his post-doc. He's worked for several major pharmaceutical companies since 1989 on drug discovery projects against schizophrenia, Alzheimer's, diabetes, osteoporosis and other diseases. To contact Derek email him directly: derekb.lowe@gmail.com Twitter: Dereklowe

Chemistry and Drug Data: Drugbank
Emolecules
ChemSpider
Chempedia Lab
Synthetic Pages
Organic Chemistry Portal
PubChem
Not Voodoo
DailyMed
Druglib
Clinicaltrials.gov

Chemistry and Pharma Blogs:
Org Prep Daily
The Haystack
Kilomentor
A New Merck, Reviewed
Liberal Arts Chemistry
Electron Pusher
All Things Metathesis
C&E News Blogs
Chemiotics II
Chemical Space
Noel O'Blog
In Vivo Blog
Terra Sigilatta
BBSRC/Douglas Kell
ChemBark
Realizations in Biostatistics
Chemjobber
Pharmalot
ChemSpider Blog
Pharmagossip
Med-Chemist
Organic Chem - Education & Industry
Pharma Strategy Blog
No Name No Slogan
Practical Fragments
SimBioSys
The Curious Wavefunction
Natural Product Man
Fragment Literature
Chemistry World Blog
Synthetic Nature
Chemistry Blog
Synthesizing Ideas
Business|Bytes|Genes|Molecules
Eye on FDA
Chemical Forums
Depth-First
Symyx Blog
Sceptical Chymist
Lamentations on Chemistry
Computational Organic Chemistry
Mining Drugs
Henry Rzepa


Science Blogs and News:
Bad Science
The Loom
Uncertain Principles
Fierce Biotech
Blogs for Industry
Omics! Omics!
Young Female Scientist
Notional Slurry
Nobel Intent
SciTech Daily
Science Blog
FuturePundit
Aetiology
Gene Expression (I)
Gene Expression (II)
Sciencebase
Pharyngula
Adventures in Ethics and Science
Transterrestrial Musings
Slashdot Science
Cosmic Variance
Biology News Net


Medical Blogs
DB's Medical Rants
Science-Based Medicine
GruntDoc
Respectful Insolence
Diabetes Mine


Economics and Business
Marginal Revolution
The Volokh Conspiracy
Knowledge Problem


Politics / Current Events
Virginia Postrel
Instapundit
Belmont Club
Mickey Kaus


Belles Lettres
Uncouth Reflections
Arts and Letters Daily
In the Pipeline: Don't miss Derek Lowe's excellent commentary on drug discovery and the pharma industry in general at In the Pipeline

In the Pipeline

« What's Translational Synthesis, Anyway? | Main | A Short Peptide And A Small Molecule »

April 18, 2013

Super-Enhancers in Cell Biology: ENCODE's Revenge?

Email This Entry

Posted by Derek

I've linked to some very skeptical takes on the ENCODE project, the effort that supposedly identified 80% of our DNA sequence as functional to some degree. I should present some evidence for the other side, though, as it comes up, and some may have come up.

Two recent papers in Cell tell the story. The first proposes "super-enhancers" as regulators of gene transcription. (Here's a brief summary of both). These are clusters of known enhancer sequences, which seem to recruit piles of transcription factors, and act differently from the single-enhancer model. The authors show evidence that these are involved in cell differentiation, and could well provide one of the key systems for determining eventual cellular identity from pluripotent stem cells.

Interest in further understanding the importance of Mediator in ESCs led us to further investigate enhancers bound by the master transcription factors and Mediator in these cells. We found that much of enhancer-associated Mediator occupies exceptionally large enhancer domains and that these domains are associated with genes that play prominent roles in ESC biology. These large domains, or super-enhancers, were found to contain high levels of the key ESC transcription factors Oct4, Sox2, Nanog, Klf4, and Esrrb to stimulate higher transcriptional activity than typical enhancers and to be exceptionally sensitive to reduced levels of Mediator. Super-enhancers were found in a wide variety of differentiated cell types, again associated with key cell-type-specific genes known to play prominent roles in control of their gene expression program

On one level, this is quite interesting, because cellular differentiation is a process that we really need to know a lot more about (the medical applications are enormous). But as a medicinal chemist, this sort of news sort of makes me purse my lips, because we have enough trouble dealing with the good old fashioned transcription factors (whose complexes of proteins were already large enough, thank you). What role there might be for therapeutic intervention in these super-complexes, I couldn't say.

The second paper has more on this concept. They find that these "super-enhancers" are also important in tumor cells (which would make perfect sense), and that they tie into two other big stories in the field, the epigenetic regulator BRD4 and the multifunctional protein cMyc:

Here, we investigate how inhibition of the widely expressed transcriptional coactivator BRD4 leads to selective inhibition of the MYC oncogene in multiple myeloma (MM). BRD4 and Mediator were found to co-occupy thousands of enhancers associated with active genes. They also co-occupied a small set of exceptionally large super-enhancers associated with genes that feature prominently in MM biology, including the MYC oncogene. Treatment of MM tumor cells with the BET-bromodomain inhibitor JQ1 led to preferential loss of BRD4 at super-enhancers and consequent transcription elongation defects that preferentially impacted genes with super-enhancers, including MYC. Super-enhancers were found at key oncogenic drivers in many other tumor cells.

About 3% of the enhancers found in the multiple myeloma cell line turned out to be tenfold-larger super-enhancer complexes, which bring in about ten times as much BRD4. It's been recently discovered that small-molecule ligands for BRD4 have a large effect on the cMyc pathway, and now we may know one of the ways that happens. So that might be part of the answer to the question I posed above: how do you target these things with drugs? Find one of the proteins that it has to recruit in large numbers, and mess up its activity at a small-molecule binding site. And if these giant complexes are even more sensitive to disruptions in these key proteins than usual (as the paper hypothesizes), then so much the better.

It's fortunate that chromatin-remodeling proteins such as BRD4 are (at least in some cases) filling that role, because they have pretty well-defining binding pockets that we can target. Direct targeting of cMyc, by contrast, has been quite difficult indeed (here's a new paper with some background on what's been accomplished so far).

Now, to the level of my cell biology expertise, the evidence that these papers have looks reasonably good. I'm certainly willing to believe that there are levels of transcriptional control beyond those that we've realized so far, weary sighs of a chemist aside. But I'll be interested to see the arguments over this concept play out. For example, if these very long stretches of DNA turn out indeed to be so important, how sensitive are they to mutation? One of the key objections to the ENCODE consortium's interpretation of their data is that much of what they're calling "functional" DNA seems to have little trouble drifting along and picking up random mutations. It will be worth applying this analysis to these super-regulators, but I haven't seen that done yet.

Comments (5) + TrackBacks (0) | Category: Biological News | Cancer


COMMENTS

1. John Timmer on April 18, 2013 10:10 AM writes...

From a quick glance at the figures, these things are 10-30kb long. Even if there were one of these at every single human gene (which seems unlikely), we're looking at a few hundred megabases - a lot more functional DNA than we thought we had, but nowhere close to the 80 percent functional.

The caveat here is that this is an n of less than five. So, we don't know how average these are yet.

Permalink to Comment

2. Anon on April 18, 2013 11:09 AM writes...

Are there any active (well commented) biology blogs of Derek's quality out there?

Permalink to Comment

3. ptm on April 18, 2013 11:12 AM writes...

Interesting, though it would be really surprising if all the enhancers were of the same size and worked in the exact same way.

Permalink to Comment

4. Eskimo on April 18, 2013 11:53 AM writes...

Derek, thanks for writing this. I skimmed the Young papers a couple days ago and did not grasp the concept of "super enhancers" they were trying to convey, and your explanations helped. And I used to work in the chromatin field!

Anon, Neuroskeptic used to be pretty good (one corner of biology = neuroscience/psychiatry/brain imaging) but he's both been snatched up by Discover and become more populist.

Permalink to Comment

5. MP on April 19, 2013 11:12 AM writes...

They've started a biotech company to try to target these enhancers.

http://www.fiercebiotech.com/story/syros-pharma-snags-30m-funding-deal-target-master-switches-cancer-genes/2013-04-11

You can't say they aren't putting (someone's) money where their mouth is.

Permalink to Comment

POST A COMMENT




Remember Me?



EMAIL THIS ENTRY TO A FRIEND

Email this entry to:

Your email address:

Message (optional):




RELATED ENTRIES
The Latest Protein-Protein Compounds
Professor Fukuyama's Solvent Peaks
Novartis Gets Out of RNAi
Total Synthesis in Flow
Sweet Reason Lands On Its Face
More on the Science Chemogenomic Signatures Paper
Biology Maybe Right, Chemistry Ridiculously Wrong
Encoded Libraries Versus a Protein-Protein Interaction