About this Author
DBL%20Hendrix%20small.png College chemistry, 1983

Derek Lowe The 2002 Model

Dbl%20new%20portrait%20B%26W.png After 10 years of blogging. . .

Derek Lowe, an Arkansan by birth, got his BA from Hendrix College and his PhD in organic chemistry from Duke before spending time in Germany on a Humboldt Fellowship on his post-doc. He's worked for several major pharmaceutical companies since 1989 on drug discovery projects against schizophrenia, Alzheimer's, diabetes, osteoporosis and other diseases. To contact Derek email him directly: Twitter: Dereklowe

Chemistry and Drug Data: Drugbank
Chempedia Lab
Synthetic Pages
Organic Chemistry Portal
Not Voodoo

Chemistry and Pharma Blogs:
Org Prep Daily
The Haystack
A New Merck, Reviewed
Liberal Arts Chemistry
Electron Pusher
All Things Metathesis
C&E News Blogs
Chemiotics II
Chemical Space
Noel O'Blog
In Vivo Blog
Terra Sigilatta
BBSRC/Douglas Kell
Realizations in Biostatistics
ChemSpider Blog
Organic Chem - Education & Industry
Pharma Strategy Blog
No Name No Slogan
Practical Fragments
The Curious Wavefunction
Natural Product Man
Fragment Literature
Chemistry World Blog
Synthetic Nature
Chemistry Blog
Synthesizing Ideas
Eye on FDA
Chemical Forums
Symyx Blog
Sceptical Chymist
Lamentations on Chemistry
Computational Organic Chemistry
Mining Drugs
Henry Rzepa

Science Blogs and News:
Bad Science
The Loom
Uncertain Principles
Fierce Biotech
Blogs for Industry
Omics! Omics!
Young Female Scientist
Notional Slurry
Nobel Intent
SciTech Daily
Science Blog
Gene Expression (I)
Gene Expression (II)
Adventures in Ethics and Science
Transterrestrial Musings
Slashdot Science
Cosmic Variance
Biology News Net

Medical Blogs
DB's Medical Rants
Science-Based Medicine
Respectful Insolence
Diabetes Mine

Economics and Business
Marginal Revolution
The Volokh Conspiracy
Knowledge Problem

Politics / Current Events
Virginia Postrel
Belmont Club
Mickey Kaus

Belles Lettres
Uncouth Reflections
Arts and Letters Daily
In the Pipeline: Don't miss Derek Lowe's excellent commentary on drug discovery and the pharma industry in general at In the Pipeline

In the Pipeline

« ACC2: Great Metabolic Target, Or Total Bust? | Main | ACS Med Chem Letters »

April 8, 2010

Let's Sequence These Guys

Email This Entry

Posted by Derek

A very weird news item: multicellular organisms that appear to be able to live without oxygen. They're part of the little-known (and only recently codified) phylum Loricifera, and these particular organisms were collected at the bottom of the Mediterranean, in a cold, anoxic, hypersaline environment.

They have no mitochondria - after all, they don't have any oxygen to work with. Instead, they have what look like hydrogenosome organelles, producing hydrogen gas and ATP from pyruvate. I'm not sure how large an organism you can run off that sort of power source, since it looks like you only get one ATP per pyruvate (as opposed to two via the Krebs cycle), but the upper limit has just been pushed past a significant point.

Comments (3) + TrackBacks (0) | Category: Biological News | General Scientific News | Life As We (Don't) Know It


1. Scientific Chick on April 8, 2010 7:03 PM writes...

And I thought I'd seen it all watching Planet Earth.

This is cool stuff!

Permalink to Comment

2. eugene on April 9, 2010 2:36 AM writes...

"I'm not sure how large an organism you can run off that sort of power source"

Sounds like a good topic for a research program. Or at least a grant.

Permalink to Comment

3. student on April 9, 2010 6:27 AM writes...

As I learnt, the Krebs cycle yields 1 ATP (GTP) per se. No doubt, from 1 pyruvate we get 1 NADH+H through dehydrogenation, 3 more and a FADH2 in the Krebs cycle, and these can be exchanged for 14 ATP.

Permalink to Comment


Remember Me?


Email this entry to:

Your email address:

Message (optional):

Weirdly, Tramadol Is Not a Natural Product After All
Thiola, Retrophin, Martin Shkrell, Reddit, and More
The Most Unconscionable Drug Price Hike I Have Yet Seen
Clinical Trial Fraud
Grinding Up Your Reactions
Peer Review, Up Close and Personal
Google's Calico Moves Into Reality
Reactive Groups: Still Not So Reactive