Corante

About this Author
DBL%20Hendrix%20small.png College chemistry, 1983

Derek Lowe The 2002 Model

Dbl%20new%20portrait%20B%26W.png After 10 years of blogging. . .

Derek Lowe, an Arkansan by birth, got his BA from Hendrix College and his PhD in organic chemistry from Duke before spending time in Germany on a Humboldt Fellowship on his post-doc. He's worked for several major pharmaceutical companies since 1989 on drug discovery projects against schizophrenia, Alzheimer's, diabetes, osteoporosis and other diseases. To contact Derek email him directly: derekb.lowe@gmail.com Twitter: Dereklowe

Chemistry and Drug Data: Drugbank
Emolecules
ChemSpider
Chempedia Lab
Synthetic Pages
Organic Chemistry Portal
PubChem
Not Voodoo
DailyMed
Druglib
Clinicaltrials.gov

Chemistry and Pharma Blogs:
Org Prep Daily
The Haystack
Kilomentor
A New Merck, Reviewed
Liberal Arts Chemistry
Electron Pusher
All Things Metathesis
C&E News Blogs
Chemiotics II
Chemical Space
Noel O'Blog
In Vivo Blog
Terra Sigilatta
BBSRC/Douglas Kell
ChemBark
Realizations in Biostatistics
Chemjobber
Pharmalot
ChemSpider Blog
Pharmagossip
Med-Chemist
Organic Chem - Education & Industry
Pharma Strategy Blog
No Name No Slogan
Practical Fragments
SimBioSys
The Curious Wavefunction
Natural Product Man
Fragment Literature
Chemistry World Blog
Synthetic Nature
Chemistry Blog
Synthesizing Ideas
Business|Bytes|Genes|Molecules
Eye on FDA
Chemical Forums
Depth-First
Symyx Blog
Sceptical Chymist
Lamentations on Chemistry
Computational Organic Chemistry
Mining Drugs
Henry Rzepa


Science Blogs and News:
Bad Science
The Loom
Uncertain Principles
Fierce Biotech
Blogs for Industry
Omics! Omics!
Young Female Scientist
Notional Slurry
Nobel Intent
SciTech Daily
Science Blog
FuturePundit
Aetiology
Gene Expression (I)
Gene Expression (II)
Sciencebase
Pharyngula
Adventures in Ethics and Science
Transterrestrial Musings
Slashdot Science
Cosmic Variance
Biology News Net


Medical Blogs
DB's Medical Rants
Science-Based Medicine
GruntDoc
Respectful Insolence
Diabetes Mine


Economics and Business
Marginal Revolution
The Volokh Conspiracy
Knowledge Problem


Politics / Current Events
Virginia Postrel
Instapundit
Belmont Club
Mickey Kaus


Belles Lettres
Uncouth Reflections
Arts and Letters Daily
In the Pipeline: Don't miss Derek Lowe's excellent commentary on drug discovery and the pharma industry in general at In the Pipeline

In the Pipeline

« Greedy Biotechs? | Main | And That Is That »

March 13, 2009

Drugs For Bacteria: Really That Hard, Or Not?

Email This Entry

Posted by Derek

A few readers have told me that I’m being too hard on antibacterial drug discovery, at least on target-based efforts in the field. The other day I asked if anyone could name a single antibacterial drug on the market that had been developed from a target, rather than by screening or modification of existing drugs and natural products, and the consensus was that there’s nothing to point to yet.

The objections are that antibacterials are an old field, and that for many years these natural products (and variations thereof) were pretty much all that anyone needed. Even when target-based drug discovery got going in earnest (gathering momentum from the 1970s through the 1980s), the antibacterial field was in general thought to be pretty well taken care of, so correspondingly less effort was put into it. Even now, there’s still a lot of potential in modifying older compounds to evade resistance, which is not something that a lot of other drug discovery areas have the option of doing.

And I have to say, these points have something to them. It’s true that antibacterials are something of a world apart; this was the first field of modern pharmaceutical discovery, and the struggle against living, adapting organisms makes it different than most other therapeutic areas even today. The lack of target-driven successes is surely due in part to historical factors. (The relative success of the later-blooming antiviral therapeutic targets is evidence in favor of this, too).

That said, I think that it’s not generally realized how few target-based drugs there are in the field (approximately none), so I did want to highlight that. And it does seem to be the case that working up from targets in the area is a hard row to hoe. There’s a rather disturbing review from GlaxoSmithKline that makes that case:

"From the 70 HTS campaigns run between 1995–2001 (67 target based, 3 whole cell), only 5 leads were delivered, so that, on average, it took 14 HTS runs to discover one lead. Based on GSK screening metrics, the success rate from antibacterial HTS was four- to five-fold lower than for targets from other therapeutic areas at this time. To be sure, this was a disappointing and financially unsustainable outcome, especially in view of the length of time devoted to this experiment and considering that costs per HTS campaign were around US$1 million. Furthermore, multiple high-quality leads are needed given the attrition involved in the lead optimization and clinical development processes required to create a novel antibiotic.

GSK was not the only company that had difficulty finding antibacterial leads from HTS. A review of the literature between 1996 and 2004 shows that >125 antibacterial screens on 60 different antibacterial targets were run by 34 different companies25. That none of these screens resulted in credible development candidates is clear from the lack of novel mechanism molecules in the industrial antibacterial pipeline. We are only aware of two compounds targeting a novel antibacterial enzyme (PDF) that have actually progressed as far as Phase I clinical trials, and technically speaking PDF was identified as an antibacterial target well before the genome era."

So although the history is a mitigating factor, the field does seem to have its. . .special character. The GSK authors discuss some of the possible reasons for this, but those can be the topic of another post or two; they're worth it.

Comments (3) + TrackBacks (0) | Category: Drug Assays | Drug Industry History | Infectious Diseases


COMMENTS

1. Punbutter on March 15, 2009 8:24 PM writes...

If you look earlier in the pipeline, you will find some target based work. Affinium has a compound AFN-1252 in Ph1. This is a FabI inhibitor that I think was actually discovered out of the GSK program. As for your future posts on the reasons for this difficulty, I recommend reviewing

Permalink to Comment

2. valda on March 18, 2009 3:47 AM writes...

Have you considered the impact that vaccination programs have had on infectious disease drug discovery, rendering the need for small molecule inhibitors unnecessary? The big killers today - HIV, TB, Malaria - which are receiving the most pharma attention have all proven very hard to get effective vaccines against (BCG is not very effective...). Therefore to ignore the efforts of the vaccine designers in the fight against infectious disease is to ignore most of the educated, targeted (albeit not targets as you would define them), battle we've been waging for all these years.

Permalink to Comment

3. GWB on August 17, 2012 1:40 PM writes...

It could also be that bacteria are just a little too close to the host from which they are being eliminated. IOW, they aren't unique enough to be properly targeted?

Permalink to Comment

POST A COMMENT




Remember Me?



EMAIL THIS ENTRY TO A FRIEND

Email this entry to:

Your email address:

Message (optional):




RELATED ENTRIES
Scripps Update
What If Drug Patents Were Written Like Software Patents?
Stem Cells: The Center of "Right to Try"
Speaking of Polyphenols. . .
Dark Biology And Small Molecules
How Polyphenols Work, Perhaps?
More On Automated Medicinal Chemistry
Scripps Merging With USC?