So I see that Andy Grove, ex-Intel, is telling everyone that the drug industry could use some of that Moore’s Law magic. I’ve noticed that people who spend a lot of time in the computer business often have an. . .interesting perspective on what constitutes progress in other fields, and we might as well appoint Grove the spokesman for their worldview:

Q: In what way does the semiconductor industry offer lessons to pharma?
A: I picked the semiconductor industry because it’s the one I know; I spent 40 years in it, during which it became the foundation for all of electronics. It has done a bunch of unbelievable things, powering computers of increasing power and speed. But in the treatment of Parkinson’s, we have gone from levodopa to levodopa. ALS [Lou Gehrig’s disease] has no good treatment; Alzheimer’s has none.

To me, the first sentence of that answer is the key one. As for the rest of it, hey, it’s all true. Perhaps one explanation for the difference between the two fields is that they’re driven by fundamentally different processes? Nah, that can’t be right:

Q: Why is the speed of progress so different in semiconductor research and drug development?
A: The fundamental tenet that drives us all in the semiconductor industry is a deeply felt conviction that what matters is time to market, or time to money. But you never hear an executive from a pharmaceutical company say, “Before the end of the year I’m going to have xyz drug,” the way Steve Jobs said the iPhone would be out on schedule. The heart of every high-tech executive has been, get the product into customers’ hands and ramp up production. That drive is just not present in pharma; the drive to get sufficient understanding and go for it is missing.

Well. Where to begin? Let’s start with a minor fact, and work our way up. I’ve been in this industry for eighteen years, and I cannot count the number of year-end goals I’ve had to deal with. Number of new targets identified, number of new projects started, number of compounds recommended for development, number of compounds progressed to Phase II, number taken to the FDA. It never ends. If Andy Grove hasn’t heard a pharma executive talk about all the wonderful things that are going to be done by a given timeline, he needs to listen harder.

But here’s the rough part: although drug company people talk like this, they’re full of manure when they do. These year-end goals, in my experience, do very little good and in some cases do a fair amount of harm. I’ll bet some of my readers have sat in a few meetings – I sure have – and looked up at the screen thinking “Why on earth are we recommending this drug to go on?”, only to have the answer be “Because it’s early November”. More idiotic things may get done in the name of meeting year-end numerical goals than for any other reason in this industry, so thanks, but I’ll try to ignore the recommendation to do them some more, but good and hard this time.

Mr. Grove, here’s the short form: medical research is different than semiconductor research. It’s harder. Ever seen one of those huge blow-ups of a chip’s architecture? It’s awe-inspiring, the amount of detail that’s crammed into such a small space. And guess what – it’s nothing, it’s the instructions on the back of a shampoo bottle compared to the complexity of a living system.

That’s partly because we didn’t build them. Making the things from the ground up is a real advantage when it comes to understanding them, but we started studying life after it had a few billion years head start. What’s more, Intel chips are (presumably) actively designed to be comprehensible and efficient, whereas living systems – sorry, Intelligent Design people – have been glued together by relentless random tinkering. Mr. Grove, you can print out the technical specs for your chips. We don’t have them for cells.

And believe me, there are a lot more different types of cells than there are chips. Think of the untold number of different bacteria, all mutating and evolving while you look at them. Move on to all the so-called simple organisms, your roundworms and fruit flies, which have occupied generations of scientists and still not given up their biggest and most important mysteries. Keep on until you hit the lower mammals, the rats and mice that we run our efficacy and tox models in. Notice how many different kinds there are, and reflect on how much we really know about how they differ from each other and from us. Now you’re ready for human patients, in all their huge, insane variety. Genetically we’re a mighty hodgepodge, and when you add environment to that it’s a wonder that any drug works at all.

Andy Grove has had prostate cancer, and now suffers from Parkinson’s, so it’s no wonder that he’s taken aback at how poorly we understand each of those diseases – not to mention all the rest of them. But his experience in the technology world has warped his worldview. We are not suffering from a lack of urgency over here – talk to anyone who’s working for a small company shoveling its cash into the furnace quarter by quarter, or for a large one watching its most lucrative patents inexorably melt away. And we don’t suffer from a lack of hard-charging modern management techniques, that’s for sure.

What we suffer from is working on some of the hardest scientific problems in the history of the species. Mr. Grove, the rest of your recommendations don’t betray much familiarity with the industry, either, so there may be only one way to make you really understand this. If you really, really believe in your ideas, please: start your own company. You’ve got the seed money; you can raise plenty more just by waving your hand. Start your own small pharma, your own biotech. Hire a bunch of bright no-nonsense researchers and show us all how it’s done. Tell them that you’re going to have a drug for Parkinson’s by the end of the year, if that’s what you think is lacking. Prove me and the rest of the industry wrong.

0 Shares:
Leave a Reply

Your email address will not be published. Required fields are marked *

You May Also Like