Corante

About this Author
DBL%20Hendrix%20small.png College chemistry, 1983

Derek Lowe The 2002 Model

Dbl%20new%20portrait%20B%26W.png After 10 years of blogging. . .

Derek Lowe, an Arkansan by birth, got his BA from Hendrix College and his PhD in organic chemistry from Duke before spending time in Germany on a Humboldt Fellowship on his post-doc. He's worked for several major pharmaceutical companies since 1989 on drug discovery projects against schizophrenia, Alzheimer's, diabetes, osteoporosis and other diseases. To contact Derek email him directly: derekb.lowe@gmail.com Twitter: Dereklowe

Chemistry and Drug Data: Drugbank
Emolecules
ChemSpider
Chempedia Lab
Synthetic Pages
Organic Chemistry Portal
PubChem
Not Voodoo
DailyMed
Druglib
Clinicaltrials.gov

Chemistry and Pharma Blogs:
Org Prep Daily
The Haystack
Kilomentor
A New Merck, Reviewed
Liberal Arts Chemistry
Electron Pusher
All Things Metathesis
C&E News Blogs
Chemiotics II
Chemical Space
Noel O'Blog
In Vivo Blog
Terra Sigilatta
BBSRC/Douglas Kell
ChemBark
Realizations in Biostatistics
Chemjobber
Pharmalot
ChemSpider Blog
Pharmagossip
Med-Chemist
Organic Chem - Education & Industry
Pharma Strategy Blog
No Name No Slogan
Practical Fragments
SimBioSys
The Curious Wavefunction
Natural Product Man
Fragment Literature
Chemistry World Blog
Synthetic Nature
Chemistry Blog
Synthesizing Ideas
Business|Bytes|Genes|Molecules
Eye on FDA
Chemical Forums
Depth-First
Symyx Blog
Sceptical Chymist
Lamentations on Chemistry
Computational Organic Chemistry
Mining Drugs
Henry Rzepa


Science Blogs and News:
Bad Science
The Loom
Uncertain Principles
Fierce Biotech
Blogs for Industry
Omics! Omics!
Young Female Scientist
Notional Slurry
Nobel Intent
SciTech Daily
Science Blog
FuturePundit
Aetiology
Gene Expression (I)
Gene Expression (II)
Sciencebase
Pharyngula
Adventures in Ethics and Science
Transterrestrial Musings
Slashdot Science
Cosmic Variance
Biology News Net


Medical Blogs
DB's Medical Rants
Science-Based Medicine
GruntDoc
Respectful Insolence
Diabetes Mine


Economics and Business
Marginal Revolution
The Volokh Conspiracy
Knowledge Problem


Politics / Current Events
Virginia Postrel
Instapundit
Belmont Club
Mickey Kaus


Belles Lettres
Uncouth Reflections
Arts and Letters Daily
In the Pipeline: Don't miss Derek Lowe's excellent commentary on drug discovery and the pharma industry in general at In the Pipeline

In the Pipeline

« It's a Bacterial Planet, You Know | Main | The March of Folly »

April 14, 2004

Reality's Revenge

Email This Entry

Posted by Derek

Molecular modeling is a technology with a past. Specifically, it's a past of overoptimistic predictions (often made, to be fair, by people who didn't understand what they were talking about.) Back in the late 1980s, when I started in the drug industry, modeling was going to take over the world and pretty darn soon, too. Several companies were founded to take advantage of this brave new world that had such software in it, and they raised serious money with tales of how they were just going to zzzzzip right to the drug structures. No dead ends, no detours, no cast of thousands - just a few chemists standing by to make the structure as it printed out for them. This has not quite worked out.

For those not in the business, modeling is the attempt to figure out molecular shapes, properties, and interactions by computation. There are many levels, some more successful than others. The ones I'm speaking of involve predicting three-dimensional shapes of molecules (and their target binding sites), and deciding which ones are more likely to fit well. It sounds like just what we need. It also sounds reasonably doable, in the same way that Hercules was probably told at first that he was going to just have to round up a few stray animals.

Predicting the shapes involves modeling the individual chemical bonds, and the interactions as the atoms and functional groups rotate around them, banging into each other or sticking through various forces. Originally, these things were calculated as if they were in interstellar space, with nothing around them. Later (and ever since) a number of methods to add some real-world solvent effects have been tried.

Another set of programs evaluates intermolecular fits, trying to work out the energies in play when a drug molecule slides into its binding site. Many tricky refinements have been added to those packages over the years, too, taking advantage of the latest insights into how various groups stack, pack, and interact.

And often enough, it just isn't enough. Many times the structures we have for our binding sites aren't accurate - the best ones are from X-ray crystallography, and plenty of good stuff just doesn't crystallize. (There are other cases where the crystal structure doesn't bear much relation to what's going on inside the real system, too, just to keep everyone on their toes.) Modeling goes haywire for all kinds of reasons.

One of the companies that emerged back in the change-the-world era of modeling was Vertex, up in Cambridge. It was founded by Joshua Boger, a Merck chemist who wanted a piece of the new thing and wasn't sure that Merck was taking it seriously enough. Well, coming soon in the Journal of Medicinal Chemistry (it's in the web preprint section now) is a paper from Vertex which gives us all some idea of why things didn't work out quite as planned.

The Vertex guys went back over about 150 cases, and found that in the majority of them, the structure of the small molecule in its binding pocket wasn't the structure you would have predicted as the best (read: lowest-energy.) In many of them, it isn't even close. You'd literally never have picked some of these conformations to start a modeling effort - they look very disfavored, and if you're going to pick things that far from the ground state then there's no end to it. The number of structures gets worse very rapidly as you move away from the local energy minima.

We in the business had suspected as much, and everyone knew of an example or two, but this is a quantitative look at just how bad the situation is. When you add in the cases where the binding site changes its conformation unexpectedly in response to the ligand, it's a wonder that any modeling efforts work at all. (Frankly, in my experience, they mostly don't, but I'm willing to stipulate that my experience has been more negative than the average.)

I like to say that molecular modeling is a magic wand, one that we keep waving in the hope that sparks will eventually start to shoot out of it. Someday they will. But there's a lot more hard work ahead, and no shortcuts in sight.

Comments (0) | Category: Drug Industry History | In Silico


COMMENTS

EMAIL THIS ENTRY TO A FRIEND

Email this entry to:

Your email address:

Message (optional):




RELATED ENTRIES
Conference in Basel
Messed-Up Clinical Studies: A First-Hand Report
Pharma and Ebola
Lilly Steps In for AstraZeneca's Secretase Inhibitor
Update on Alnylam (And the Direction of Things to Come)
There Must Have Been Multiple Chances to Catch This
Weirdly, Tramadol Is Not a Natural Product After All
Thiola, Retrophin, Martin Shkrell, Reddit, and More