About this Author
DBL%20Hendrix%20small.png College chemistry, 1983

Derek Lowe The 2002 Model

Dbl%20new%20portrait%20B%26W.png After 10 years of blogging. . .

Derek Lowe, an Arkansan by birth, got his BA from Hendrix College and his PhD in organic chemistry from Duke before spending time in Germany on a Humboldt Fellowship on his post-doc. He's worked for several major pharmaceutical companies since 1989 on drug discovery projects against schizophrenia, Alzheimer's, diabetes, osteoporosis and other diseases. To contact Derek email him directly: Twitter: Dereklowe

Chemistry and Drug Data: Drugbank
Chempedia Lab
Synthetic Pages
Organic Chemistry Portal
Not Voodoo

Chemistry and Pharma Blogs:
Org Prep Daily
The Haystack
A New Merck, Reviewed
Liberal Arts Chemistry
Electron Pusher
All Things Metathesis
C&E News Blogs
Chemiotics II
Chemical Space
Noel O'Blog
In Vivo Blog
Terra Sigilatta
BBSRC/Douglas Kell
Realizations in Biostatistics
ChemSpider Blog
Organic Chem - Education & Industry
Pharma Strategy Blog
No Name No Slogan
Practical Fragments
The Curious Wavefunction
Natural Product Man
Fragment Literature
Chemistry World Blog
Synthetic Nature
Chemistry Blog
Synthesizing Ideas
Eye on FDA
Chemical Forums
Symyx Blog
Sceptical Chymist
Lamentations on Chemistry
Computational Organic Chemistry
Mining Drugs
Henry Rzepa

Science Blogs and News:
Bad Science
The Loom
Uncertain Principles
Fierce Biotech
Blogs for Industry
Omics! Omics!
Young Female Scientist
Notional Slurry
Nobel Intent
SciTech Daily
Science Blog
Gene Expression (I)
Gene Expression (II)
Adventures in Ethics and Science
Transterrestrial Musings
Slashdot Science
Cosmic Variance
Biology News Net

Medical Blogs
DB's Medical Rants
Science-Based Medicine
Respectful Insolence
Diabetes Mine

Economics and Business
Marginal Revolution
The Volokh Conspiracy
Knowledge Problem

Politics / Current Events
Virginia Postrel
Belmont Club
Mickey Kaus

Belles Lettres
Uncouth Reflections
Arts and Letters Daily
In the Pipeline: Don't miss Derek Lowe's excellent commentary on drug discovery and the pharma industry in general at In the Pipeline

In the Pipeline

« One Of Us Is Hallucinating | Main | Ezetimibe, The Press, and More »

February 24, 2004

The Beginning? It's Right Past the End. . .

Email This Entry

Posted by Derek

There's a paper in the latest issue of Science from a team at Schering-Plough that may have tracked down how the company's cholesterol absorption inhibitor (Zetia, ezetimibe) works. That news really takes me back.

It's been years now, so it won't do any harm to mention that I used to work there. I had a ringside seat for the early years of that project, because it all happened right around the corner from my old lab. Ezetimibe was discovered fortuitously when one of my colleagues synthesized and sent in the original structures of the class for a project targeting a cholesterol handling enzyme known as ACAT. I believe that the in vitro assay was down that week, so the compounds went into the open slots for mouse testing, where they worked better than anything they'd seen. But when the protein assay came back on line, it was discovered that the compounds had no affinity for ACAT at all. Food for thought, that was.

The chemist involved was named Duane Burnett, and a search for "Burnett DA" in Pubmed will send you to most of the chemistry literature on the subject (along with this review). He had indeed hit on some features of a cholesterol binding site (which was his aim, based on blackboard-level structure modeling - no computers involved.) The compounds seemed to hit an unknown target in the small intestine that helped transport dietary cholesterol. The search for the protein involved began in about 1993, and seems to have concluded successfully in 2002-2003, years later than anyone thought it would take.

In the mid-1990s, all the classic methods for tracking down an unknown binding site were tried. The lead structure was biotinylated, modified with radiolabels, photoaffinity tags, and fluorescent groups (along with various combinations of these.) None of these methods identified the target.

They finally tracked down the protein by brute force genomics, using a cDNA library prepared from rat intestinal lining, coupled with sequence searching for the features you'd expect in a transmembrane protein with a steroid binding site. The evidence seems clear that the protein they've found is a key for ezetimibe's actions, but - most oddly - it still doesn't seem to bind to the protein. That would certainly explain the failure of all those modified compounds to pull out the target, but it does make you wonder what's going on. (Is there another real target? But if so, why wasn't that identified through the modified compounds? And so on.)

It took a lot of nerve to go on with that project, and I have to salute the people who kept it going. As with many other successful projects, there were several points along the way where it seemed like the whole effort was going to fail. As it turns out, ezetimibe is one of the main (few?) bright spots in Schering-Plough's portfolio. Merck, their eventual partner for the drug, values it pretty highly, too. I'm glad I got the chance to see it happen.

Credit where it's due! I should note that ezetimibe itself was synthesized by another former colleague of mine, Stuart Rosenblum. He and a host of others developed a huge series of analogs, which built in more acitivity and greater in vivo stability. Just the way drug development is supposed to work, actually.

Comments (0) + TrackBacks (0) | Category: Cardiovascular Disease | Drug Assays | Drug Industry History


Remember Me?


Email this entry to:

Your email address:

Message (optional):

The Last Post
The GSK Layoffs Continue, By Proxy
The Move is Nigh
Another Alzheimer's IPO
Cutbacks at C&E News
Sanofi Pays to Get Back Into Oncology
An Irresponsible Statement About Curing Cancer
Oliver Sacks on Turning Back to Chemistry