Corante

About this Author
DBL%20Hendrix%20small.png College chemistry, 1983

Derek Lowe The 2002 Model

Dbl%20new%20portrait%20B%26W.png After 10 years of blogging. . .

Derek Lowe, an Arkansan by birth, got his BA from Hendrix College and his PhD in organic chemistry from Duke before spending time in Germany on a Humboldt Fellowship on his post-doc. He's worked for several major pharmaceutical companies since 1989 on drug discovery projects against schizophrenia, Alzheimer's, diabetes, osteoporosis and other diseases. To contact Derek email him directly: derekb.lowe@gmail.com Twitter: Dereklowe

Chemistry and Drug Data: Drugbank
Emolecules
ChemSpider
Chempedia Lab
Synthetic Pages
Organic Chemistry Portal
PubChem
Not Voodoo
DailyMed
Druglib
Clinicaltrials.gov

Chemistry and Pharma Blogs:
Org Prep Daily
The Haystack
Kilomentor
A New Merck, Reviewed
Liberal Arts Chemistry
Electron Pusher
All Things Metathesis
C&E News Blogs
Chemiotics II
Chemical Space
Noel O'Blog
In Vivo Blog
Terra Sigilatta
BBSRC/Douglas Kell
ChemBark
Realizations in Biostatistics
Chemjobber
Pharmalot
ChemSpider Blog
Pharmagossip
Med-Chemist
Organic Chem - Education & Industry
Pharma Strategy Blog
No Name No Slogan
Practical Fragments
SimBioSys
The Curious Wavefunction
Natural Product Man
Fragment Literature
Chemistry World Blog
Synthetic Nature
Chemistry Blog
Synthesizing Ideas
Business|Bytes|Genes|Molecules
Eye on FDA
Chemical Forums
Depth-First
Symyx Blog
Sceptical Chymist
Lamentations on Chemistry
Computational Organic Chemistry
Mining Drugs
Henry Rzepa


Science Blogs and News:
Bad Science
The Loom
Uncertain Principles
Fierce Biotech
Blogs for Industry
Omics! Omics!
Young Female Scientist
Notional Slurry
Nobel Intent
SciTech Daily
Science Blog
FuturePundit
Aetiology
Gene Expression (I)
Gene Expression (II)
Sciencebase
Pharyngula
Adventures in Ethics and Science
Transterrestrial Musings
Slashdot Science
Cosmic Variance
Biology News Net


Medical Blogs
DB's Medical Rants
Science-Based Medicine
GruntDoc
Respectful Insolence
Diabetes Mine


Economics and Business
Marginal Revolution
The Volokh Conspiracy
Knowledge Problem


Politics / Current Events
Virginia Postrel
Instapundit
Belmont Club
Mickey Kaus


Belles Lettres
Uncouth Reflections
Arts and Letters Daily
In the Pipeline: Don't miss Derek Lowe's excellent commentary on drug discovery and the pharma industry in general at In the Pipeline

In the Pipeline

« Place Your Bets | Main | Doing Justice to Thimerosal, and the Story »

December 2, 2002

Europe, Again

Email This Entry

Posted by Derek

Stephen den Beste has a good article about European innovation in science and technology. Well, actually, it's about the lack of it, as a symptom of the increasing differences between the US and Western Europe in general.

Along the way, he mentions the bright spots in what he calls a "high-tech disaster area," among them the Swiss pharmaceutical industry. That's on target, although Roche, for one, hasn't had any big news in a while. (They have had the nerve to commercialize T-20 as an HIV therapy, which may end up being a little too innovative - see "Better Them Than Me" on August 8.) And I've had a quote posted over my desk from Andrea Vasella, chairman of Novartis, for several years now. In an interview, he said "If you don't want to spend the big money and take the big risks, you shouldn't be in the pharmaceutical business," which is unimprovably correct.)

But note that Roche's drug is being produced in Colorado, not Basel. And note that Novartis is expanding their drug discovery research in a huge new facility, but not in Basel. It's in the former Necco wafer factory in Cambridge, MA.

Why are they doing that? Unfortunately for Europe, the reason is of a piece with the rest of den Beste's article, and the one he refers to. It's unavoidable: America is home to most of the innovative drug discovery research in the world today. Foreign companies, almost without exception, really can't be considered major forces without a US research presence. For example, the only European country that can be considered a pharmaceutical rival to Switzerland is Britain, and its companies - GlaxoSmithKline and the half-Swedish AstraZeneca - have huge US research operations. Germany and France aren't quite in the same league, but their biggest companies (Bayer, Aventis) do plenty of work here, too.

People who want to do this kind of research at the highest level have a good chance of either ending up here, or seriously considering it. It's not the Europe doesn't have plenty of smart and capable people (a point den Beste also makes.) It's just that there are plenty of Europe's top people over here, compared to how many of America's best are over there.

Why does research seem to thrive more in the US? You can talk about the money that's spent here, but some of that money has put into research because of its historical payoff, leaving you with the same question to answer. I think that there are common American attitudes which turn out to be crucial for successful scientific research: a tolerance for risk-taking, a willingness to try out ideas that might sound unworkable, and a persistence in trying to find solutions, one way or another. And there's another important attitude that isn't often given its due. Andrew Sullivan refers to it in his Thanksgiving essay when he relates a story that British journalist Henry Fairlie used to tell:

He was walking down a suburban street one afternoon in a suit and tie, passing familiar rows of detached middle-American dwellings and lush, green Washington lawns. In the distance a small boy - aged perhaps six or seven - was riding his bicycle towards him.

And in a few minutes, as their paths crossed on the pavement, the small boy looked up at Henry and said, with no hesitation or particular affectation: "Hi." As Henry told it, he was so taken aback by this unexpected outburst of familiarity that he found it hard to say anything particularly coherent in return. And by the time he did, the boy was already trundling past him into the distance.

In that exchange, Henry used to reminisce, so much of America was summed up. That distinctive form of American manners, for one thing: a strong blend of careful politeness and easy informality. But beneath that, something far more impressive. It never occurred to that little American boy that he should be silent, or know his place, or defer to his elder. . .

That's it, right there: we don't know our place, and it's a good thing. Fairlie was right to pick up on this, and to celebrate it. It's important in manners, in politics, and in science as well. No groundbreaking work was ever done by anyone who knew their place in the world and was completely content with it. You have to feel that there's something missing from your knowledge, something that needs to be figured out. And no major scientific advances have come from people who deferred at all times to their elders, either. Such advances necessarily involve things that said elders never thought of (at best,) or things that show up their omissions and mistakes (at worst.)

I've talked about this with colleagues from France, Germany, Italy and other countries. Even among people who disagree with me on many other social and political points, the American primacy in science has been unquestioned, as has its connection with our culture. We're an odd bunch, and it's to our benefit.

I did my post-doctoral work in Germany, myself, so I can end this with a little personal history. At one point there, I was doing some photochemistry. My fellow chemists know that there are quite a few degrees you can go to with those reactions. Running them in (expensive) quartz glassware next to your ultraviolet lamp is one extreme, since quartz lets it all through and spares not. And from there you go down through various filters, progressively cutting out the hard short wavelengths until you get to the mildest light that'll still do what you want.

I tried my chemistry first in plain quartz, and cooked my poor reaction to a rich brown in no time. I needed an intermediate-cutoff filter, but there were none to be had (and we weren't about to spend the money on one, either, a situation common to academic labs the world over.) I found some old literature, though, that suggested some silver salt solutions that would do the job - not great, but a lot better than nothing. Silver salts, we had. The best way to use them was to have them in the chilled water that circulates in the jacket past the blazing hot UV lamp.

But we had no pump for the job. And when I suggested one to our grad student in charge of ordering supplies, he looked grave and said, yes, perhaps we could do that, but of course it would take several weeks even if we could spend the money, yes. . .I was already out the door, heading to my car, and heading to the shopping district in the center of town. I found a pump just where I thought I might. So I paid for it out of my own pocket, drove right back to the lab, hooked things up and within the hour was merrily photolyzing away.

The system was purring along when the supply guy came by to see what was up. I told him that I had a pump now, no need to order anything, thanks and all that. . .when I noticed him looking at my reaction setup with a puzzled expression. "Where did you find this pump?" he asked. I just pointed to light shield I'd rigged up, a piece of cardboard decorated with drawings of bright tropical fish. "Why, from the pet store," I told him, "where else?"

Comments (0) + TrackBacks (0) | Category: Who Discovers and Why


COMMENTS

EMAIL THIS ENTRY TO A FRIEND

Email this entry to:

Your email address:

Message (optional):




RELATED ENTRIES
Scripps Update
What If Drug Patents Were Written Like Software Patents?
Stem Cells: The Center of "Right to Try"
Speaking of Polyphenols. . .
Dark Biology And Small Molecules
How Polyphenols Work, Perhaps?
More On Automated Medicinal Chemistry
Scripps Merging With USC?