Corante

About this Author
DBL%20Hendrix%20small.png College chemistry, 1983

Derek Lowe The 2002 Model

Dbl%20new%20portrait%20B%26W.png After 10 years of blogging. . .

Derek Lowe, an Arkansan by birth, got his BA from Hendrix College and his PhD in organic chemistry from Duke before spending time in Germany on a Humboldt Fellowship on his post-doc. He's worked for several major pharmaceutical companies since 1989 on drug discovery projects against schizophrenia, Alzheimer's, diabetes, osteoporosis and other diseases. To contact Derek email him directly: derekb.lowe@gmail.com Twitter: Dereklowe

Chemistry and Drug Data: Drugbank
Emolecules
ChemSpider
Chempedia Lab
Synthetic Pages
Organic Chemistry Portal
PubChem
Not Voodoo
DailyMed
Druglib
Clinicaltrials.gov

Chemistry and Pharma Blogs:
Org Prep Daily
The Haystack
Kilomentor
A New Merck, Reviewed
Liberal Arts Chemistry
Electron Pusher
All Things Metathesis
C&E News Blogs
Chemiotics II
Chemical Space
Noel O'Blog
In Vivo Blog
Terra Sigilatta
BBSRC/Douglas Kell
ChemBark
Realizations in Biostatistics
Chemjobber
Pharmalot
ChemSpider Blog
Pharmagossip
Med-Chemist
Organic Chem - Education & Industry
Pharma Strategy Blog
No Name No Slogan
Practical Fragments
SimBioSys
The Curious Wavefunction
Natural Product Man
Fragment Literature
Chemistry World Blog
Synthetic Nature
Chemistry Blog
Synthesizing Ideas
Business|Bytes|Genes|Molecules
Eye on FDA
Chemical Forums
Depth-First
Symyx Blog
Sceptical Chymist
Lamentations on Chemistry
Computational Organic Chemistry
Mining Drugs
Henry Rzepa


Science Blogs and News:
Bad Science
The Loom
Uncertain Principles
Fierce Biotech
Blogs for Industry
Omics! Omics!
Young Female Scientist
Notional Slurry
Nobel Intent
SciTech Daily
Science Blog
FuturePundit
Aetiology
Gene Expression (I)
Gene Expression (II)
Sciencebase
Pharyngula
Adventures in Ethics and Science
Transterrestrial Musings
Slashdot Science
Cosmic Variance
Biology News Net


Medical Blogs
DB's Medical Rants
Science-Based Medicine
GruntDoc
Respectful Insolence
Diabetes Mine


Economics and Business
Marginal Revolution
The Volokh Conspiracy
Knowledge Problem


Politics / Current Events
Virginia Postrel
Instapundit
Belmont Club
Mickey Kaus


Belles Lettres
Uncouth Reflections
Arts and Letters Daily
In the Pipeline: Don't miss Derek Lowe's excellent commentary on drug discovery and the pharma industry in general at In the Pipeline

In the Pipeline

« Chemical Warfare, Part Four: More On Nerve Agents and Their Chemistry | Main | As Others See Us »

September 15, 2002

Chemical Warfare, Part Five: The Real World

Email This Entry

Posted by Derek

The previous posts have been a quick tour around the chemical weapons landscape. I have to say, it's a depressing place to visit, and I'll be glad to leave it. But I can't do that without some thoughts on what, in the end, the stuff is good for.

Well, killing people, obviously. Or threatening to kill them, more likely. That's leads to an old military issue: whether to make your fearsome weapons known or not. If other countries know that your state is armed to the teeth with nerve gas, this knowledge will probably serve as a deterrent should they think about attacking you. Of course, that means that anyone who does attack will be prepared for whatever you can throw at them (and, presumably, ready to respond in kind.) Perhaps you're better off hiding your worst stuff, so if you have to use it, it'll have the maximum effect. . .

This thinking can be seen in action in the First and Second World Wars. The German chlorine attacks in 1915 caught the Allies almost completely by surprise (despite a fair amount of intelligence beforehand, as is seemingly always the case with surprise attacks.) But the surprise didn't last long. Within ten days, Kitchener had directed that the British forces respond with chlorine of their own, and the race was on. As the chemistry (and the technology used to deliver it) evolved, so did protective gear and readiness. All in all, the gas warfare of WW I ended up as a reeking, corrosive stalemate.

World War II never went chemical, despite prewar expectations. This was in spite of a German technological advantage. As the last two posts outlined, they were alone in nerve gas technology, and they put significant resources behind developing it. Large stockpiles of ready-to-use nerve gas munitions were captured at the end of the war. Why weren't they fired?

For that matter, what about the World War I standbys, like mustard gas? Huge amounts of were ready on both sides, each ready to reply in kind if the other side used it. As an example, here's an account of the German raid on US military shipping at Bari, Italy in 1943. One of the ships destroyed was loaded with mustard gas, producing the only battlefield chemical casualties of the war. (Thanks to Stephen Den Beste for pointing this incident out to me.)

That knowledge, that both camps were stocked with mustard gas and protection against it, seems to be what kept it from ever being used. The experience of World War I strongly suggested that the situation would end up as status quo ante, albeit with everyone in protective gear and more destruction all around.

As for the Tabun, its initial use by German forces would surely have been effective, especially at first. No one was prepared for a chemical agent that lethal. But the fact of chemical warfare would have been immediately clear, even if the specific agent was new and unknown, and the retaliation would surely have been terrible. Recall that by the time the German military was desperate enough to use nerve gas, the Allies had increasingly established dominance in the skies, in huge bomber attacks. It's likely that these would have been used for chemical counterattacks, and the consequences of an RAF or 8th Air Force raid loaded with mustard gas would be terrible indeed.

At the same time, the German government wasn't completely sure that the Allies didn't have nerve gases of their own. Publications in the scientific literature on insecticide chemistry almost completely dried up during the war, a fact that was noted in Germany. They couldn't be certain that the US hadn't stumbled across the same discovery that Gerhard Schrader's group had. . .and if so, then those retaliatory bombers might even have been loaded with something like Tabun rather than mustard gas, with consequences that are difficult to imagine.

I'm prepared to argue that against a competent and prepared opponent, the known chemical weapons are essentially useless. The historical record seems to bear this out. Look at the uses of mustard gas since World War I. Morocco in the 1920s, Ethiopian villages in the 1930s, Yemen in the 1960s - a motley assortment of atrocities against people who couldn't retaliate.

The exception is the Iran-Iraq war, yet another way in which it reminded observers of World War I. Iraq surprised the Iranian forces with mustard gas (see this 1984 report from a Swedish arms-control group,) but eventually Iran was able to get its own chemical agents on line. Neither side ended up with much permanent advantage this way, although Iraq was able to compensate somewhat for its disadvantage in manpower. (By the way, the Iraqi government also lied constantly and inventively about its use of chemical agents. At one point they suggested that Iranian casualties must have somehow been exposed to mustard gas somewhere else.)

I see no reason to assume that the current chemical warfare situation with Iraq has changed. In a war with US and British forces, they would be facing the best-equipped and most technically competent militaries in the world, and they could not hope to tip any sort of balance by battlefield use of even large amounts of chemical weapons.

As the large PDF file I linked to yesterday makes clear, the quality of Iraqi agents during the war with Iran wasn't very high. They needed the stuff immediately and didn't want to invest the time and effort to purify things (by distillation, for example - there's another wonderful job for you.) Their nerve gases were typically contaminated with the hydrogen fluoride I spoke of, rendering them corrosive and unstable to long-term storage. One assumes that they've remedied this problem over the years, but this also means that Iraq may have even less supply of chemical agents than some have estimated.

So, if they're to be used at all, it would be against selected targets, and the only ones they'd be useful against are unprotected civilians. Iraq infamously ran field tests of various agents on its own Kurdish population in the late 1980s, and we can assume that they know what they're doing and how to do it. But what population of civilians could be attacked to Iraq's advantage? Certainly not those of the Arab states that are aiding the US military efforts (such as Qatar and Bahrain.) The only thing that makes any sort of (diseased) sense is an attack on Israel, similar to those in the (First) Gulf War.

That way, Saddam Hussein can make himself out to be the mighty warrior who gassed Israel, slaughtered the oppressor, took the battle to the common enemy of all Arabs. . .ah, you know the sort of thing. He might see it as the best way to try to split off any Arab or Moslem support and to ignite a full-scale Middle East conflict that would shuffle the deck. Of course, that appears to have been his calculation the first time around, and none of that came to pass. One would expect the Israelis to be even more prepared this time around

So much for the military uses of chemical weapons. I've alluded along the way to their uses in terrorism, which seem to me to be more worth worrying about. No one's expecting a chemical attack on a normal workday. If executed well, such an effort would, unfortunately, seem well worth a terrorist group's while.

I could go on for quite a while on that topic, but I don't think it's that great an idea. I can't talk about the problems involved without potentially giving someone a leg up on solving them. And I can't talk about what I'd be most worried about without giving someone a good starting point. The only thing, in good conscience, that I think I can do is end by quoting Wittgenstein: Wovon man nicht sprechen kann, darüber muß man schweigen. (Whereof one cannot speak, thereon must one remain silent.)

I'd like to thank all my visitors for sticking with me through these postings, which I hope have been worth the time to read. Pharmaceutical and science news will start again tomorrow. Here's hoping that we don't revisit this topic any time soon!

Comments (0) + TrackBacks (0) | Category: Chem/Bio Warfare


COMMENTS

EMAIL THIS ENTRY TO A FRIEND

Email this entry to:

Your email address:

Message (optional):




RELATED ENTRIES
One and Done
The Latest Protein-Protein Compounds
Professor Fukuyama's Solvent Peaks
Novartis Gets Out of RNAi
Total Synthesis in Flow
Sweet Reason Lands On Its Face
More on the Science Chemogenomic Signatures Paper
Biology Maybe Right, Chemistry Ridiculously Wrong