Corante

About this Author
DBL%20Hendrix%20small.png College chemistry, 1983

Derek Lowe The 2002 Model

Dbl%20new%20portrait%20B%26W.png After 10 years of blogging. . .

Derek Lowe, an Arkansan by birth, got his BA from Hendrix College and his PhD in organic chemistry from Duke before spending time in Germany on a Humboldt Fellowship on his post-doc. He's worked for several major pharmaceutical companies since 1989 on drug discovery projects against schizophrenia, Alzheimer's, diabetes, osteoporosis and other diseases. To contact Derek email him directly: derekb.lowe@gmail.com Twitter: Dereklowe

Chemistry and Drug Data: Drugbank
Emolecules
ChemSpider
Chempedia Lab
Synthetic Pages
Organic Chemistry Portal
PubChem
Not Voodoo
DailyMed
Druglib
Clinicaltrials.gov

Chemistry and Pharma Blogs:
Org Prep Daily
The Haystack
Kilomentor
A New Merck, Reviewed
Liberal Arts Chemistry
Electron Pusher
All Things Metathesis
C&E News Blogs
Chemiotics II
Chemical Space
Noel O'Blog
In Vivo Blog
Terra Sigilatta
BBSRC/Douglas Kell
ChemBark
Realizations in Biostatistics
Chemjobber
Pharmalot
ChemSpider Blog
Pharmagossip
Med-Chemist
Organic Chem - Education & Industry
Pharma Strategy Blog
No Name No Slogan
Practical Fragments
SimBioSys
The Curious Wavefunction
Natural Product Man
Fragment Literature
Chemistry World Blog
Synthetic Nature
Chemistry Blog
Synthesizing Ideas
Business|Bytes|Genes|Molecules
Eye on FDA
Chemical Forums
Depth-First
Symyx Blog
Sceptical Chymist
Lamentations on Chemistry
Computational Organic Chemistry
Mining Drugs
Henry Rzepa


Science Blogs and News:
Bad Science
The Loom
Uncertain Principles
Fierce Biotech
Blogs for Industry
Omics! Omics!
Young Female Scientist
Notional Slurry
Nobel Intent
SciTech Daily
Science Blog
FuturePundit
Aetiology
Gene Expression (I)
Gene Expression (II)
Sciencebase
Pharyngula
Adventures in Ethics and Science
Transterrestrial Musings
Slashdot Science
Cosmic Variance
Biology News Net


Medical Blogs
DB's Medical Rants
Science-Based Medicine
GruntDoc
Respectful Insolence
Diabetes Mine


Economics and Business
Marginal Revolution
The Volokh Conspiracy
Knowledge Problem


Politics / Current Events
Virginia Postrel
Instapundit
Belmont Club
Mickey Kaus


Belles Lettres
Uncouth Reflections
Arts and Letters Daily
In the Pipeline: Don't miss Derek Lowe's excellent commentary on drug discovery and the pharma industry in general at In the Pipeline

In the Pipeline

« Enzymes, Right and Wrong | Main | Get Your Miracle Elixir »

April 2, 2002

Nothing Like It in the World

Email This Entry

Posted by Derek

Glenn Reynolds over at Instapundit posted an interesting exchange, which started off as a comment on a post from Kausfiles:

(Mickey) Kaus sees medical advances as inevitably expensive. I think it's more complex
han that. Medical expenses actually follow a bell-like curve, like most technology. When
you can't do anything, ("here, eat this root and hope for the best") it's cheap. Then you
get treatments that are expensive and marginally effective (sanitariums for TB). Then,
back on the downslope of the curve, you get treatments that are cheaper and more
effective (antibiotics for TB). Cancer treatments now are very expensive. It's entirely
possible (I'd say likely) that in 40 years they'll be cheap and much more effective.

UPDATE: Reader Bruce Hay responds: "Yeah, but the cutting-edge treatments will always
be expensive. You're right that what's cutting edge today will be tomorrow's familiar (and
relatively cheap) treatment. But a new cutting edge will take its place, it will be costly, and
every patient will demand it." This is a good point -- though it suggests that the real
problem is the appetite for cutting-edge treatments, rather than the movement of the
cutting edge. And, actually, there is a natural limit to this progression, which occurs when
nearly all physical ills are readily curable. And I think that date may happen within the next
40 years. Or, to be more accurate, people who know a lot more than me, and whose
opinions I respect, think that.

Well, as someone from the drug industry, do I think that too? Sometimes I do, actually. But some days I wonder. Both Glenn and his correspondent are correct in their ways. It's true that the latest treatment generally is expensive (since it's usually more complex, and its inventors are trying to make back their discovery costs.) But it's also true that eventually you reach a point where there is no better treatment possible, and then the cost has nowhere to go but down.

A side issue: in a nasty, authoritarian society, you'd expect the opposite: that the treatment's cost would have nowhere to go but up, as the squeeze was applied tighter and tighter to the helpless customers. I know full well that there are people who believe that we live in that sort of society already, but is it necessary to say that I think they're deluded? I despair of convincing anyone with that worldview, because you can't use reason to argue a person out of a position they didn't get into through reason. It's like trying to remove a screw with a claw hammer; it's the wrong tool for the job. But I just don't know what the right tool is in such cases. . .

OK, back to curing everyone. Time for a brief shower of cold water (stick with me, I get more cheerful.) As it stands now, we don't have such wonderful therapies for much of anything, frankly. We've got some good stuff, it's true, but put it up against the ideals and the limitations are clear. There's nothing that makes headaches disappear in seconds or instantly heals a cut, nothing which can quickly and permanently reduce your blood pressure or clean out your arteries. There's no way to really cure almost anything that can go wrong with your liver, pancreas, or kidneys. Sometimes we can stop things from getting any worse. We can fix some cancers (but not many) and those still require some mighty unpleasant therapy. Arthritis? Osteoporosis? Alzheimer's? Parkinson's? We can only treat symptoms, and those rather poorly.

How about infectious diseases? It's a constant struggle, since even the organisms we can actually beat are always coming up with new resistance strategies. Others we can only fight to a vicious standstill, and plenty more are basically stand-back-and-hope. Most viral diseases fall into that category. The viral disease with the absolute widest number of treatment options today is AIDS (which makes sense, but many people don't realize that it's true.) If you're unfortunate enough to come down with viral encephalitis, you'll have to wait it out. If you come down with something like Marburg, you'll die in short order. (Unless you're very lucky indeed. There's a philosophical problem - if you were that lucky, you probably wouldn't have contracted a hemorrhagic fever!)

Well, after that mighty dose of gloom, why do I still think we're going to get all these things sorted out? Because, even though I've spent two paragraphs running modern medicine into the ground, I'm still mindful of the context. Compared with ideal treatments, our treatments are primitive. But compared with the historical standard, they're like having magic powers. Read the opening chapters of Lewis Thomas's "The Youngest Science" for a good perspective on this. A telling quote is from Oliver Wendall Holmes, who said that if the entire pharmacopeia of his time were dumped into the sea, it "would be all the better for mankind, and all the worse for the fish." We're going to make the best therapies of today look just as feeble.

Medical knowledge has been growing insanely fast. My hopes spring from my belief that we're still just in the early lift-off phase of that exponential growth curve. New tools are coming along every year that add to our knowledge at an even faster pace. In a way, we're suffering a bit because of it. I've said before that the pace of pharmaceutical innovation seems to be slowing, but that's partly because we have more clues than we know what to do with. We don't know yet which ones to pursue (or how best to do it.) We'll figure it out, though, because there are vast rewards waiting for those who do it.

In the long run, I fully expect gene therapy and antisense to fix what can be fixed at the genomic level. Downstream, I think we'll eventually get control of protein expression, which should take care of another huge swath of trouble. Small-molecule folks like me (or the next generation after me) will take care of the rest. And as we go after diseases, we'll also be figuring out how to deal with the normal damage of aging. I don't know how long the human life span can be extended, but I'm certain that we don't have to live it in poor health. We may not know the exact mechanism of Alzheimer's, for example, but we know that it's the result of something going wrong, something that can be fixed. Damn it, show me something that can't be fixed!

How long will all this take? I've no idea. But it's coming. Better stand back - or better still, come on down and help out. There's room for everyone, there really is.

Comments (0) + TrackBacks (0) | Category: Drug Industry History


COMMENTS

EMAIL THIS ENTRY TO A FRIEND

Email this entry to:

Your email address:

Message (optional):




RELATED ENTRIES
Amicus Fights Its Way Through in Fabry's
Did Pfizer Cut Back Some of Its Best Compounds?
Don't Optimize Your Plasma Protein Binding
Fluorinated Fingerprinting
One of Those Days
ChemDraw Days
Incomprehensible Drug Prices? Think Again.
Proteins Grazing Against Proteins